The Cauchy-Kovalevskaya extension theorem in discrete Clifford analysis
نویسندگان
چکیده
منابع مشابه
The Cauchy-Kovalevskaya Extension Theorem in Discrete Clifford Analysis
Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac operator, i.e. a first order, Clifford vector valued difference operator. In this contribution, we establish a Cauchy-Kovalevskaya extension theorem for discre...
متن کاملCauchy-green Type Formulae in Clifford Analysis
A Cauchy integral formula is constructed for solutions to the polynomial Dirac equation (Dk+Yfcrn~JQ bmDm)f = 0 , where each bm is a complex number, D is the Dirac operator in R" , and f is defined on a domain in R" and takes values in a complex Clifford algebra. Some basic properties for the solutions to this equation, arising from the integral formula, are described, including an approximatio...
متن کاملTwo powerful theorems in Clifford analysis
Two useful theorems in Euclidean and Hermitean Clifford analysis are discussed: the Fischer decomposition and the Cauchy-Kovalevskaya extension.
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولAn extension of the Wedderburn-Artin Theorem
In this paper we give conditions under which a ring is isomorphic to a structural matrix ring over a division ring.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2011
ISSN: 1534-0392
DOI: 10.3934/cpaa.2011.10.1097